

Vanne de Régulation Pneumatique 2 Voies 2 Ways Pneumatic Control Valve

2020 P

Vanne de Régulation Pneumatique 2 Voies	3
2 Ways Pneumatic Control Valve	21

FR

ΕN

Page laissée blanche intentionnellement

Vanne de Régulation Pneumatique 2 Voies

2020 P

Sommaire

1.	Instructions generales de securite	4
1.1.	Responsabilités	4
1.2.	Avertissements	4
1.3.	ATEX (Atmosphère explosive)	5
2.	Installation et connexions	5
2.1.	Environnement	5
2.2.	Instructions de montage	6
2.3.	Connexions électriques	6
2.4.	Connexions pneumatiques	6
2.5.	Mise en service	7
2.6.	Contrôle de démarrage	7
3.	Maintenance	7
3.1.	Changement de garniture de la tige	7
3.2.	Changement de l'ensemble clapet	8
3.3.	Changement du siège	8
3.4.	Remplacement du joint d'équilibrage de clapet	8
3.5.	Couples et ordre de serrage des écrous/boulons	9
4.	Encombrement	10
5.	Liste des pièces détachées	11
5.1.	DN15 – DN65	11
5.2.	DN80 – DN200	13
5.3.	DN80 – DN100 EQUILIBRE	15
5.4.	DN125 – DN200 EQUILIBREE	17
6.	Plaque d'identification	19
7.	Déclaration de conformité	19

1. Instructions générales de sécurité

Les vannes de régulation 2 voies sont conçues pour être utilisées avec divers types de fluides. Le choix d'une vanne dépend de son application et des caractéristiques techniques requises (DN des tuyauteries, pression nominale, matériau du corps de la vanne ainsi que le raccordement).

Le matériau du corps ainsi que la pression nominale de la vanne sont indiqués distinctement sur la vanne. Ces données doivent être adaptées aux conditions d'utilisation ainsi qu'au fluide employé.

La traçabilité des vannes est assurée par leur numéro de série unique situé sur la vanne afin de faciliter les commandes de pièces détachées.

Les vannes sont soumises à plusieurs tests après fabrication et sont livrées réglées (exemple : Test de pression, test de fonctionnement et test d'étanchéité). Aucun réglage supplémentaire n'est nécessaire.

La responsabilité du fabricant n'est pas engagée en cas de dommages provoqués par des forces ou facteurs extérieurs, une utilisation non conforme à l'usage prévu, du non-respect de ce mode d'emploi, de l'utilisation de personnel peu qualifié et en cas de modifications de l'appareil effectuées par l'utilisateur.

Veuillez consulter les précautions d'emploi avant toute installation ou utilisation.

L'installation ou la mise en service des appareils ne devra être réalisée que par des personnes qualifiées. Le personnel qualifié est, en raison de sa formation spécialisée, de ses connaissances dans le domaine de la maintenance et de la régulation, de ses expériences, de sa connaissance des prescriptions nationales, des normes et directives en vigueur, en mesure d'effectuer les travaux décrits et de reconnaître de façon autonome les dangers potentiels.

Aucune modification, transformation ou altération du produit, ne peut être autorisée. Ces opérations seraient sous la responsabilité exclusive du client et peuvent mettre en péril la sécurité ou nuire à la performance du produit.

En fonction du fluide utilisé ou de l'opération réalisée, différents dangers peuvent être présents, nous recommandons d'utiliser des équipements de protection individuels notamment :

- vêtements, gants, lunettes et protection respiratoire si le fluide est froid, chaud, caustique ou corrosif
- protections auditives lors de travaux réalisés à proximité de la vanne
- harnais de sécurité en cas de risque de chute
- casque, chaussures de sécurité éventuellement protégées contre les décharges électriques

Cette liste est non exhaustive et doit être complétée par les exigences de l'exploitant.

1.1. Responsabilités

L'exploitant doit respecter les réglementations, notamment relatives à la sécurité. Il doit mettre à disposition la présente notice ainsi que tout autre document applicable au matériel à la disposition du personnel. Il doit former le personnel à l'utilisation conforme du matériel et veiller à sa sécurité ainsi qu'à toute personne pouvant être présente. L'exploitant est tenu de respecter les valeur limites définies dans les caractéristiques techniques du produit ainsi que celles présentes sur la plaque de firme. Ces limites sont également valables lors du démarrage et de l'arrêt de l'installation.

Le personnel d'exploitation doit avoir connaissance de cette notice ainsi que les autres documents applicables, il est tenu d'observer les mises en gardes, avertissements et remarques inclues. Par ailleurs il doit être familiarisé avec les réglementations en vigueur, dans le domaine de la sécurité au travail et de la prévention des accidents, qu'il est tenu de respecter.

1.2. Avertissements

Risque d'éclatement de l'appareil sous pression, respecter la pression maximale admissible de la vanne, évacuer la pression et purger l'intégralité de la partie de l'installation concernée avant toute intervention.

Risque de **pincement** dû aux pièces en mouvement. L'appareil contient des pièces en mouvement, tige de clapet, de servomoteur et noix d'accouplement. Risque de coincement en cas d'introduction de membres. Ne pas intervenir sur la vanne tant que l'alimentation pneumatique et électrique du servomoteur est active. Vérifier que la course de la tige n'a pas été bloquée par un objet ou grippée, si tel est le cas évacuer les contraintes des ressorts en suivant les instructions dédiées.

Risque de **pertes auditives** et de surdité dû à un niveau sonore élevé. Le bruit dépend de l'utilisation de l'appareil, de ses équipements, de l'installation et du fluide utilisé. Portez des protections auditives lors de la réalisation de travaux à proximité de la vanne.

Risque de **brûlure** dû à un fluide chaud ou froid. Selon le fluide utilisé, les composants de l'appareil peuvent atteindre une température très élevée ou très basse qui peuvent créer des brûlures en cas de contact avec la peau. Laisser l'appareil reprendre une température acceptable avant intervention, porter des vêtements de protection ainsi que des gants.

Les vannes type 2020 équipées d'une protection Ex peuvent être installées en zones 1, 2, 21, 22 (2014/34/UE). Le personnel doit avoir reçu une formation ou être habilité à travailler sur des appareils ATEX dans des installations en zones à risque d'explosion.

L'ensemble des accessoires, servomoteurs, fin de course, positionneurs doit avoir un niveau de protection supérieur ou égal à celui de la vanne seule. La conformité de tous ses composants et de l'ensemble devra être vérifiée. SART von Rohr décline toute responsabilité si un appareil est ajouté par une personne étrangère à la société et que la conformité n'ait pas pu être vérifiée.

- Vérifier que les conditions de service entrent bien dans les limites d'utilisation inscrites sur la plaque de firme.
- Vérifier le bon déplacement de la tige de l'appareil (sans à-coup ni point dur)
- La continuité électrique doit-être assurée, l'appareil doit être correctement relié à la terre.
- Si l'appareil est calorifugé, nous déclinons toute responsabilité notamment concernant les risques de surface chaude et de décharges électrostatiques.
- Il est nécessaire avant installation de contrôler par un contrôle visuel l'absence de trace, de choc, ou de corrosion.
- Vérifier si les matériaux soumis à la pression sont compatibles avec le fluide régulé.

La surface de l'appareil peut s'échauffer en raison de la température du fluide process. Ceci dépend de la situation d'installation et doit être pris en compte par l'opérateur. La température de surface des vannes dépend principalement de la température du fluide de l'application. L'appareil lui-même ne contient aucune source de chauffage. Pour déterminer la température de surface maximale, outre la température du fluide, d'autres éléments tels que la température ambiante ou le rayonnement solaire doivent être prises en compte. A titre préventif, considérer la température maximale du fluide comme la température de surface maximale s'il n'est pas possible de déterminer la température de la surface réelle même dans les cas de dysfonctionnements prévus.

Classe de température requise (température d'ignition du gaz)	Température de surface maximum admissible	Température ambiante maximale admissible
T6 (T > 85 °C)	+65°C	+50°C
T5 (T > 100 °C)	+80°C	+50°C
T4 (T > 135 °C)	+115°C	+50°C
T3 (T > 200 °C)	+180°C	+50°C
T2 (T > 300 °C)	+280°C	+50°C
T1 (T > 450 °C)	+430°C	+50°C

L'appareil peut contenir des composants ayant un revêtement ou une peinture non-conductrice. Dans ces cas-là, l'opérateur doit prendre des mesures appropriées pour empêcher la charge électrostatique. Si besoin, nettoyer la vanne avec un chiffon humide. Assurez-vous que le nettoyage ne provoquera aucune charge électrostatique.

Eviter toute sorte d'impact externe. Les impacts externes peuvent générer des étincelles par des processus de friction entre les différents matériaux.

2. Installation et connexions

2.1. Environnement

Une vanne de régulation peut être installée dans un environnement industriel mais en tenant compte d'une qualité d'ambiance. L'ambiance dans laquelle va travailler la vanne est très importante pour sa durée de vie et sa fiabilité dans le temps. Cette ambiance doit être prise en compte lors de la spécification et conduira éventuellement à une définition hors standard (peinture spéciale, joints supplémentaires, matériaux spéciaux etc...).

a) Teneur en poussière du milieu ambiant

La teneur en poussière doit être aussi faible que possible et inférieure à 10 000 particules par m³. Les particules de métaux ferreux, de carbone, goudrons, abrasifs et de fibres textiles doivent être limitées et en tous cas signalées lors de l'appel d'offre afin de prévenir l'échauffement de l'électronique, l'accumulation de champs magnétiques, l'échauffement et l'usure des pièces en mouvement. De la même manière, les composés chlorés, souffre et Nox doivent être évités et signalés lors de l'appel d'offre. Ces composés accélèrent la corrosion qui peut être amplifiée par les variations de température.

b) <u>Températures d'ambiance</u>

Les élastomères et l'électronique sont sensibles à la température. La vanne de régulation doit fonctionner dans une fourchette de température d'ambiance de -25 à +50°C pour donner satisfaction et garantir une fiabilité et une durée de vie optimale.

c) Humidité relative

Un taux d'humidité trop élevé est favorable à la condensation en cas de baisse de la température et favorise la corrosion. Un taux d'humidité trop faible favorise les décharges électrostatiques et doit également être évité. En maintenant le taux d'humidité entre 30 et 70 %, les risques deviennent beaucoup plus limités. Une utilisation en extérieur sans protection doit être précisée à l'appel d'offre.

2.2. Instructions de montage

Avant toute installation, lire attentivement les recommandations ci-dessous :

- Laissez de l'espace autour de la vanne pour faciliter l'accès en cas de maintenance
- Ne pas oublier d'ôter les bouchons de protection avant montage
- Les tuyauteries doivent être nettoyées afin d'éliminer toute pollution (rouille, calamine, billes de soudure) avant l'installation d'une vanne de régulation afin d'éviter d'endommager le clapet ainsi que son étanchéité. Un filtre en amont de la vanne doit être installé afin de limiter le passage de particules résiduelles :
 - o Filtration 100μm maximum pour Kv ≤ 2,5
 - o Filtration 800μm maximum pour Kv > 2,5
- Repérez le sens du fluide. Le sens de montage de la vanne sur la tuyauterie est indiqué par une flèche sur le corps de vanne.
- La vanne doit être installée sur tuyauterie horizontale servomoteur en haut. Une installation sur tuyauterie verticale doit être spécifiée à la commande. Aucune autre position n'est acceptable. En cas d'installation sur une tuyauterie verticale, la solution devra être validée par les services techniques de SART VON ROHR, sans quoi la garantie ne pourra être appliquée. Si la solution est validée, les piliers devront se trouver dans le même plan vertical afin de pouvoir supporter les poids du moteur. Aucune autre position des piliers n'est acceptable.
- Toutes les précautions doivent être prises afin de protéger la vanne de toutes contraintes extérieures, y compris sur les brides de raccordement.

<u>Une vanne de régulation n'est pas une vanne d'arrêt</u> et ne peut en aucun cas isoler une ligne en étant considérée comme une vanne Tout ou Rien. Une vanne Tout ou Rien doit être installée en amont de la vanne si nécessaire.

Afin d'obtenir un fonctionnement optimal de la vanne :

- L'admission doit être située axialement à une distance dégagée de tout encombrement supérieure à 5x DN.
- L'échappement doit être situé axialement à une distance dégagée de tout encombrement supérieure à 10x DN. Afin de ne pas dépasser la température maximale d'utilisation de l'actionneur et de ses accessoires (90°C pour un servomoteur pneumatique type PA ou MA, 80°C pour un positionneur), le calorifugeage des tuyauteries et du corps de vanne est préconisé avant le démarrage.

2.3. Connexions électriques

Le câblage du servomoteur doit être effectué en accord avec les instructions de montage. Couper l'alimentation avant toutes connexions. Avant toutes connexions, prendre soin de comparer les données d'alimentation, de tension, d'ampérage et de fréquence indiquées sur la plaque signalétique du servomoteur. Vérifier que le type de signal de commande du positionneur est bien compatible (4-20 mA, 0-10V, etc...).

2.4. Connexions pneumatiques

Pour chaque servomoteur pneumatique, prévoir un régulateur de pression, afin d'éviter aux servomoteurs de s'influencer mutuellement et pour protéger la membrane de surpression accidentelle.

La pression maximum doit être de 6 bar relatif.

La condensation dans le système doit être absolument évitée, l'emploi d'un air sec est donc obligatoire, en particulier pour le positionneur (absence de graissage).

La qualité de l'air doit être de classe (2,2,2) selon l'ISO 8573-1.

2.5. Mise en service

Toutes les vannes sont réglées et pré-testées en usine. Un réglage avant montage n'est donc pas nécessaire. Le démarrage ne doit être effectué qu'après avoir lu et appliqué les paragraphes précédents.

Etanchéité de la tige de la vanne

Les vannes comportant une étanchéité réalisée à l'aide de graphite pure doivent être resserrées si nécessaire, les autres systèmes comportent un ressort de prétention, ce qui ne nécessite aucun resserrage. Attention, un resserrage trop important pourrait provoquer des efforts de friction et détériorer le coulissement de la tige.

Vanne de Régulation Pneumatique 2 Voies

2.6. Contrôle de démarrage

Pour fonctionner normalement, les vannes doivent être utilisées avec une course comprise entre 15 et 95 %. Débit désiré non atteint :

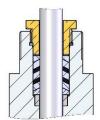
- Vérifier que la vanne s'ouvre bien à 100 % avec 20 mA
- Vérifier que la vanne ainsi que le filtres sont propres
- Vérifier que la vanne correspond bien aux spécifications définies

Afin d'éviter une usure prématurée, il convient d'employer une vanne adaptée aux caractéristiques de fonctionnement qui lui sont demandées et d'éviter un fonctionnement continue hors de sa plage d'utilisation. Le dimensionnement d'une vanne peut être défini sur demande.

Contrôle de la régulation

La régulation doit être stable (stabilité du clapet). Une régulation oscillante peut entraîner une usure prématurée de l'étanchéité de la tige et du positionneur. Dans ce cas, nous contacter.

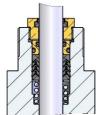
3. Maintenance


Ces opérations doivent être réalisées par du personnel compétent et formé.

3.1. Changement de garniture de la tige

Une garniture endommagée doit être changée ou resserrée (dans le cas d'un système en graphite). Dans le cas contraire, les dégâts occasionnés risquent de ne pas être réparable immédiatement. Les garnitures sont disponibles en pièces détachées. Afin de faciliter la commande, communiquer le numéro de série de la vanne indiqué sur la plaque firme.

- a) Cette opération doit être réalisée par du personnel compétent.
- b) Purger les tuyauteries et désactiver la vanne. Vérifier l'absence de pression.
- c) Afin de pouvoir changer la garniture, le servomoteur doit être démonté. Pour démonter le servomoteur, veuillezvous référer aux instructions prévues à cet effet.
- d) Retirer le presseur.
- e) Enlever l'ancienne garniture et nettoyer son emplacement.
- f) Insérer une nouvelle garniture avec l'outillage adapté.
- g) Resserrer le presseur, remonter le servomoteur et replacer les accessoires (capteurs fins de course, positionneur...)


3.1.1. Presse Etoupe Graphite SVS

Les garnitures doivent être resserrées si nécessaire. Lors de cette opération effectuez un serrage très progressif du presseur, ½ tour par ½ tour maxi. Stopper le serrage dès que les garnitures empêchent le coulissement de la tige. Attention, un resserrage trop important pourrait provoquer des efforts de friction et détériorer le coulissement de la tige.

3.1.2. Presse Etoupe PTFE

Le presseur ne nécessite aucun resserrage tant que le celui-ci est en contact avec le chapeau de vanne (systèmes comportant un ressort de prétention). Dans le cas contraire, le presseur doit venir en contact avec le chapeau de vanne. Une fois en contact, serrer ¼ de tour supplémentaire.

3.2. Changement de l'ensemble clapet

Nous recommandons fortement de changer la garniture, le joint de couvercle et les joint de sièges lors du changement de l'ensemble clapet.

- a) Réaliser l'ensemble des opérations du chapitre 3.1 de a) à c).
- b) Retirer le diffuseur 28.
- c) Retirer le siège 18 et les joints de siège 21.
- d) Remplacer le siège 18 et les joints de siège 21 dans le corps de vanne.
- e) Remonter le diffuseur 28.
- f) Remonter le couvercle 3 et l'ensemble clapet 12+2 sur le corps 1 après avoir remplacé le joint de couvercle 7.
- g) Resserrer les écrous 5 suivant le tableau 3.5 en croisant le serrage.
- h) Resserrer le presseur, remonter le servomoteur et replacer les accessoires (capteurs fins de course, positionneur...)

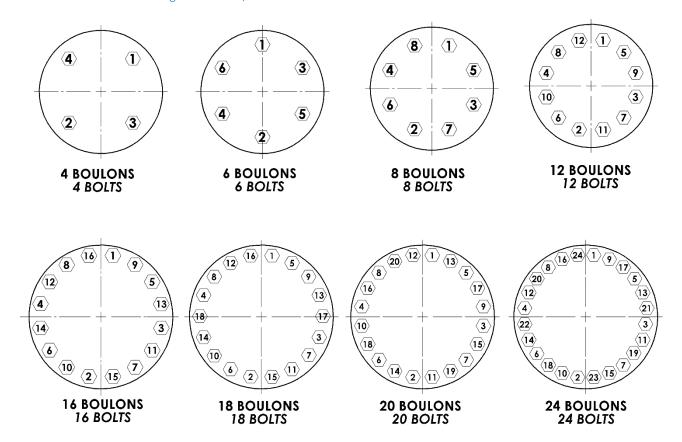
3.3. Changement du siège

Nous recommandons fortement de changer la garniture, le joint de couvercle et les joint de sièges lors du changement de siège de vanne.

- i) Réaliser l'ensemble des opérations du chapitre 3.1 de a) à c).
- j) Retirer le diffuseur 28.
- k) Retirer le siège 18 et les joints de siège 21.
- l) Remplacer le siège 18 et les joints de siège 21 dans le corps de vanne.
- m) Remonter le diffuseur 28.
- n) Remonter le couvercle 3 et l'ensemble clapet 12+2 sur le corps 1 après avoir remplacé le joint de couvercle 7.
- o) Resserrer les écrous 5 suivant le tableau 3.5 en croisant le serrage.
- p) Resserrer le presseur, remonter le servomoteur et replacer les accessoires (capteurs fins de course, positionneur...)

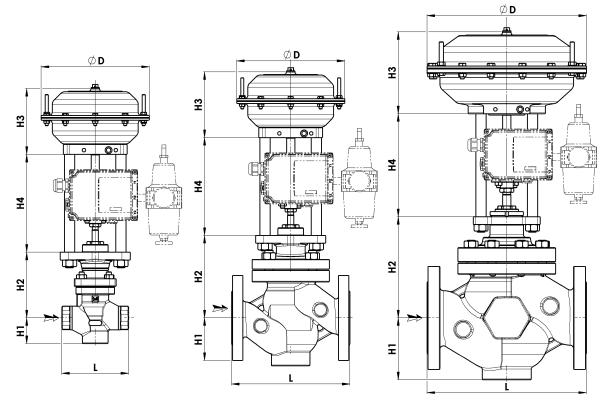
3.4. Remplacement du joint d'équilibrage de clapet

Nous recommandons fortement de changer la garniture, le joint de couvercle et les joint de sièges lors du changement de joint d'équilibrage de clapet.


- a) Réaliser l'ensemble des opérations du chapitre 3.1 de a) à c).
- b) Démonter l'ensemble clapet 12+2 du couvercle 3.
- c) Retirer les 4x vis 136 + plaquettes d'arrêt 137 du clapet 2 et retirer la platine de joint 135.
- d) Nettoyer la gorge de joint et la surface d'équilibrage du couvercle 3.
- e) Remplacer le joint d'équilibrage 19 préalablement graissé avec une graisse type Molykote Multilub
- f) Remonter la platine de joint **135** avec les 4x vis **136** + plaquettes d'arrêt **137** collés.
- g) Remonter avec précaution l'ensemble clapet **12+2** préalablement graissé avec la graisse fournie dans le kit garniture.
- h) Remonter le couvercle 3 et l'ensemble clapet 12+2 sur le corps 1 après avoir remplacé le joint de couvercle 7.
- i) Resserrer les écrous **5** suivant le tableau 3.5 en croisant le serrage.
- j) Resserrer le presseur, remonter le servomoteur et replacer les accessoires (capteurs fins de course, positionneur...)

3.5. Couples et ordre de serrage des écrous/boulons

3.5.1. Couple de serrage boulonnerie de chapeau

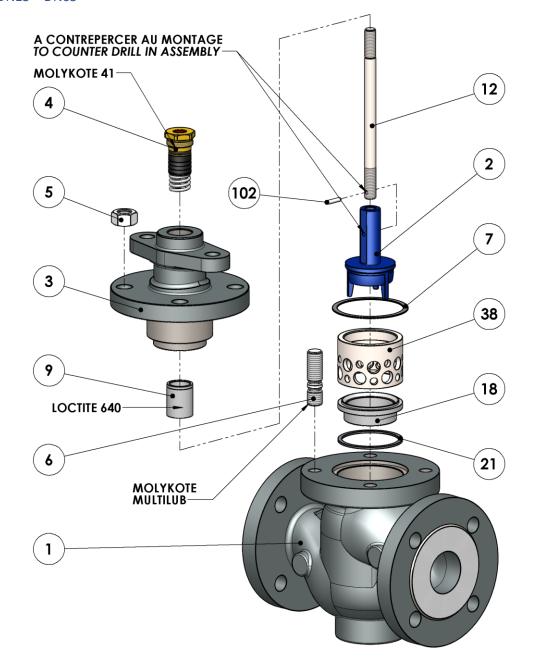

	Vanne			Couple
DN	Pression	Νx	D	(N.m)
15/20	PN16/40 - Class 150/300	4 x	M10	30
25/32	PN16/40 - Class 150/300	4 x	M12	55
40/50	PN16/40 - Class 150/300	4 x	M16	95
65	PN16/PN40	4 x	M16	135
80	PN16/40 - Class 150/300	8 x	M16	110
100	PN16/40 - Class 150/300	8 x	M16	135
125	PN16/40 - Class 150/300	12 x	M16	140
150	PN16/40 - Class 150/300	12 x	M20	175
200	PN16/40 - Class 150/300	16 x	M20	225

3.5.2. Ordre de serrage des écrous/boulons

4. Encombrement

Version taraudé et soudé												
DN	1/2"	3/4"	1"	1"%	1" ½	2"						
L	130	130	130	200	200	200						
H1	60	60	60	90	90	90						
H2	128	128	128	156	156	156						
H4 (max)	190	190	190	190	190	190						
Masse / Mass (kg)	5	5	5	11.5	11.5	11.5						
			Vers	ion à b	rides							
DN	15	20	25	32	40	50	65	80	100	125	150	200
L PN16/25/40 FS (1)	130	150	160	180	200	230	290	310	350	400	480	600
L Class 150 RF (37)	184	184	184		222	254		298	352		451	543
L Class 150 RTJ (37)	190	194	197		235	267		318	368		473	568
L Class 300 RF ⁽³⁸⁾			197		235	267		311	365		464	556
L Class 300 RTJ ⁽³⁸⁾	201	207	210		248	283		333	384		489	584
H1	48	53	60	70	85	90	100	120	145	170	205	250
H2 (PN16/25/40 + Class 150/300)	128	128	133	138	160	156	162	178	198	280	305	350
H4 (max)	190	190	190	190	190	190	200	200	210	288	288	300
Masse (kg)	6	7	9	11	15	17.5	25	36	54	105	150	270

- (1) Suivant EN558 série 1 DIN3202-1 séries F 1
- (37) Suivant EN558 série 38 CEI 60534-3-2 + ISA S75.08.01
- (38) Suivant EN558 série 39 CEI 60534-3-2 + ISA S75.08.01

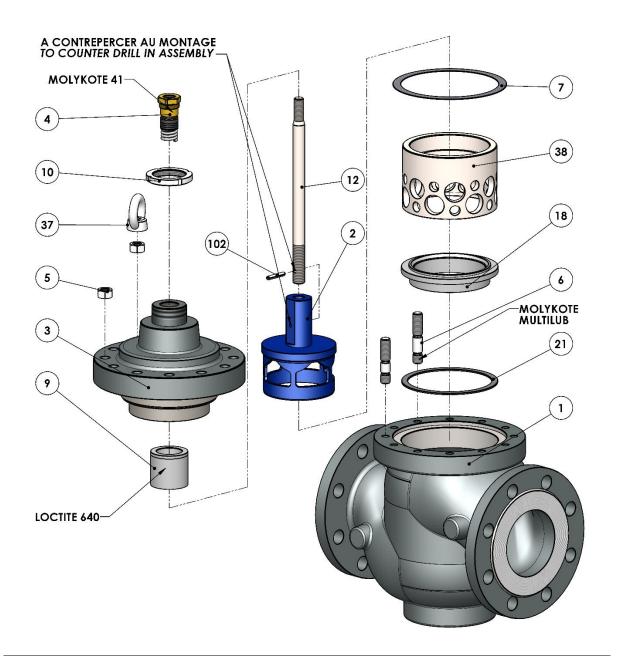

	PA35-B6	PA60-A6	PA60-C6	MA41-A6	MA41-B6	MA41-C6	MA60-G6	MA60-D6
ØD	210	310	310	420	420	420	600	600
Н3	130	156	176	224	242	329	383	534
Masse (kg)	5.2	10.5	12.5	55	55	76	160	192

Toutes les cotes en mm

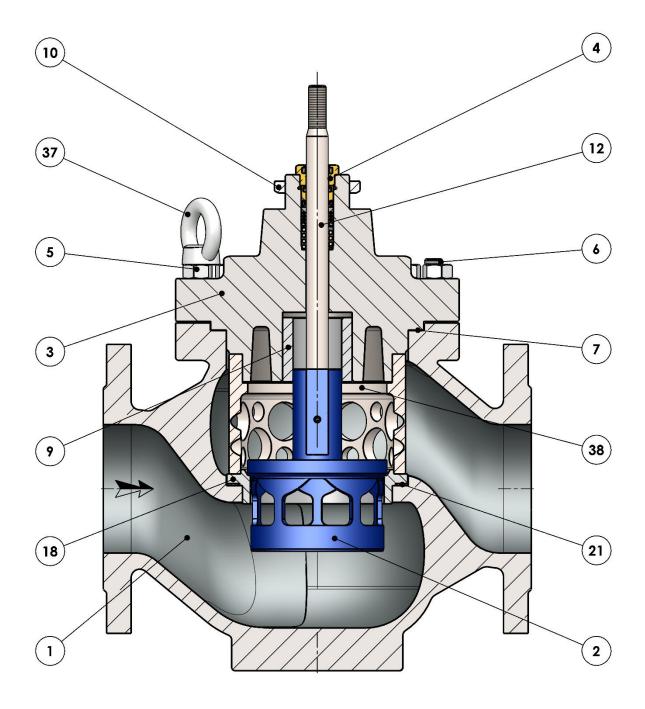
FR

5. Liste des pièces détachées

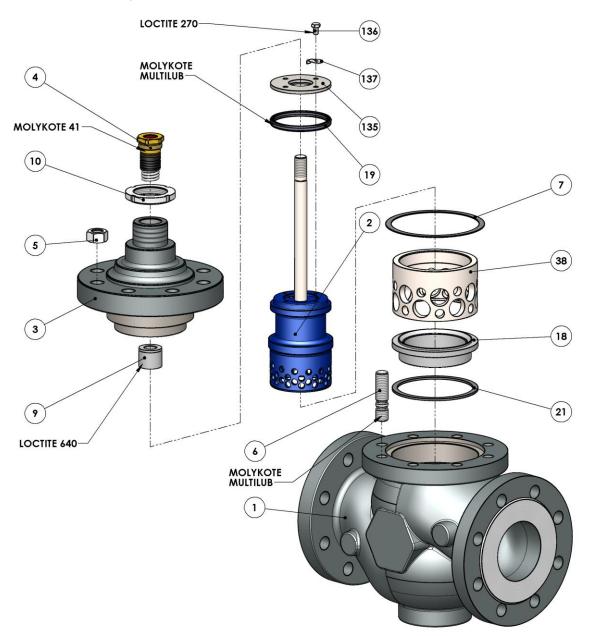
5.1. DN15 - DN65


Rep.	Désignation	Matière
1	Corps	1.0619-A216 WCB / 1.4408-A351 CF8M
2*	Clapet	Inox
3	Couvercle	1.0619-WCB / 1.4404-1.4408-CF8M
4*	Presse étoupe	Laiton / Inox
5	Ecrou	8.8 / A2-70
6	Goujon	8.8 / A2-70
7*	Joint	Graphite-Inox
9	Douille de guidage	Inox
12	Tige	Inox
18	Siège	Inox
21*	Joint	Graphite-Inox
38	Diffuseur	Inox
102	Goupille	Inox

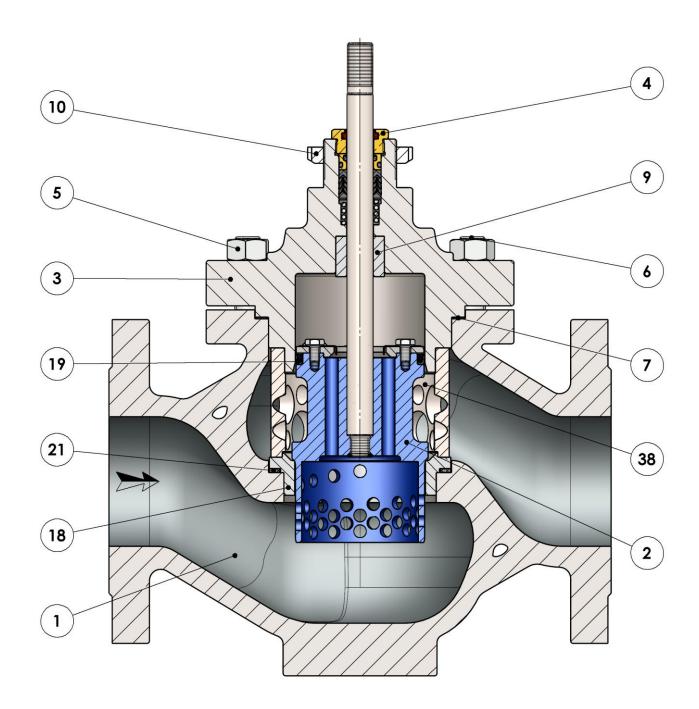
^{*} Pièces de rechange

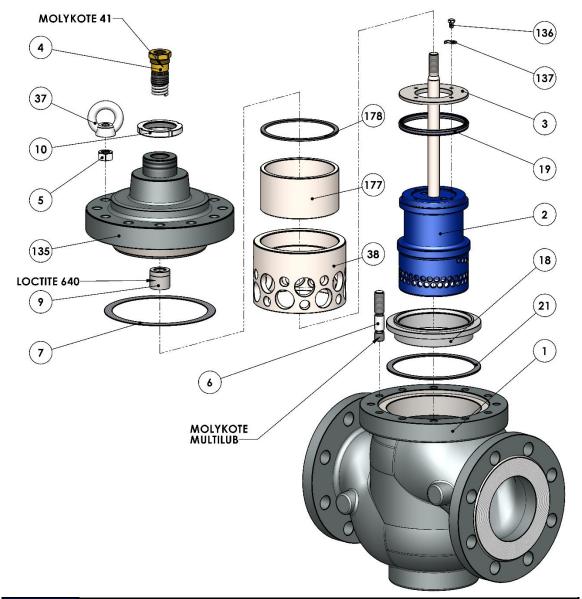

5.2. DN80 - DN200

Rep.	Désignation	Matière
1	Corps	1.0619-A216 WCB / 1.4408-A351 CF8M
2*	Clapet	Inox
3	Couvercle	1.0619-WCB / 1.4404-1.4408-CF8M
4*	Presse étoupe	Laiton / Inox
5	Ecrou	8.8 / A2-70
6	Goujon	8.8 / A2-70
7*	Joint	Graphite-Inox
9	Douille de guidage	Inox
10	Ecrou à encoches	Inox
18	Siège	Inox
21*	Joint	Graphite-Inox
37	Anneau de levage	Acier / Inox
38	Diffuseur	Inox
102	Goupille	Inox

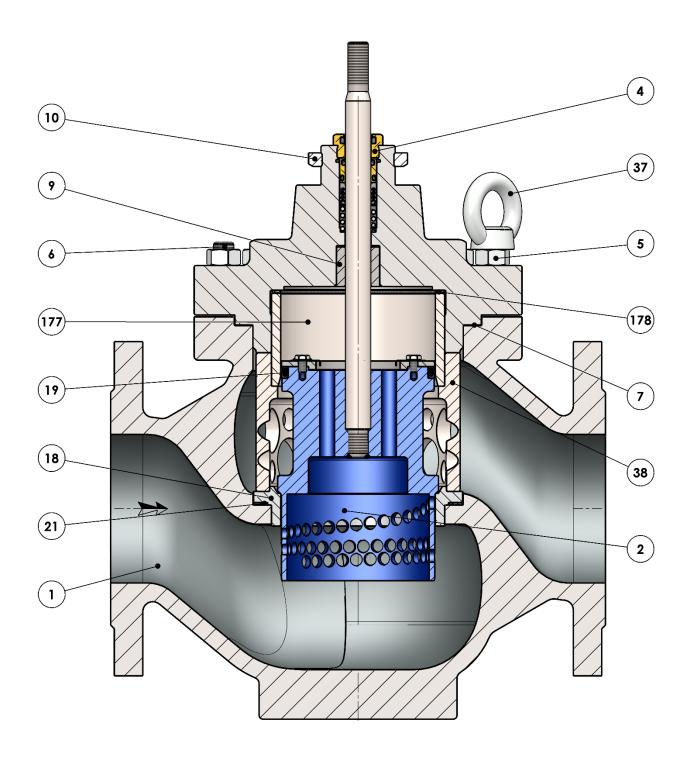

* Pièces de rechange Rep. 37 suivant DN

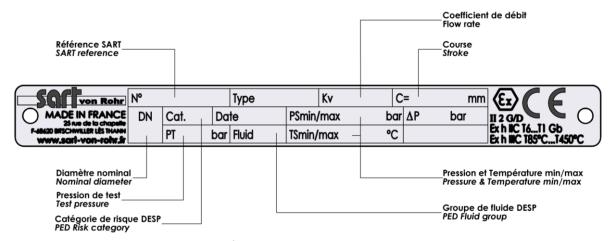
FR


5.3. DN80 - DN100 EQUILIBRE


Rep.	Désignation	Matière
1	Corps	1.0619- A216 WCB-1.4408- A351 CF8M
2*	Clapet	Inox
3	Couvercle	1.0619-WCB / 1.4404-1.4408-CF8M
4*	Presse étoupe	Laiton / Inox
5	Ecrou	8.8 / A2-70
6	Goujon	8.8 / A2-70
7*	Joint	Graphite-Inox
9	Douille de guidage	Inox
10	Ecrou à encoches	Inox
18	Siège	Inox
19*	Joint	PTFE-Inox
21*	Joint	Graphite-Inox
38	Diffuseur	Inox
135	Platine	Inox
136	Vis	Inox
137	Plaque d'arret	Inox

*Pièces de rechange


5.4. DN125 - DN200 EQUILIBREE


Rep.	Désignation	Matière
1	Corps	1.0619- A216 WCB-1.4408- A351 CF8M
2*	Clapet	Inox
3	Couvercle	1.0619-WCB / 1.4404-1.4408-CF8M
4*	Presse étoupe	Laiton / Inox
5	Ecrou	8.8 / A2-70
6	Goujon	8.8 / A2-70
7*	Joint	Graphite-Inox
9	Douille de guidage	Inox
10	Ecrou à encochest	Inox
18	Siège	Inox
19*	Joint	PTFE-Inox
21*	Joint	Graphite-Inox
38	Diffuseur	Inox
135	Platine	Inox
136	Vis	Inox
137	Plaque d'arret	Inox

*Pièces de rechange

6. Plaque d'identification

Modèle de plaque pour version ATEX

Pour les pressions minimale et maximale d'opération ainsi que les températures minimales et maximales d'opération se reporter à l'accusé de réception correspondant au numéro de chaque vanne.

Pression de test selon DESP.

7. Déclaration de conformité

La catégorie de risque et le module d'évaluation utilisés sont précisés dans la déclaration de conformité UE. La catégorie de risque et/ou l'application éventuelle de la directive ATEX est indiquée sur la plaque de firme apposée sur l'appareil (cf. Erreur ! Source du renvoi introuvable.).

Les modules d'évaluation de la conformité à la DESP utilisés sont les suivants :

Cat. I : module A Cat. II : module D1

Normes / codes employés :

CODAP 2010

NF EN 12516-1 / NF EN12516-2

ANSI B16-34

L'application éventuelle de la directive ATEX est indiquée sur la plaque de firme de l'appareil.

Normes / codes employés :

NF EN IEC 80079-36

NF EN IEC 80079-37

SIMI 2020 P FR-EN Rev3 Sous réserve de modification

Page laissée blanche intentionnellement

2 Ways Pneumatic Control Valve

2020 P

Summary

1.	Safety note	22
1.1.	Responsibilities	22
1.2.	Warnings	22
1.3.	ATEX (Explosive area)	23
2.	Installation and connections	23
2.1.	Environment	23
2.2.	Fitting instructions	24
2.3.	Electricals connections	24
2.4.	Pneumatics connections	24
2.5.	Setting service	24
2.6.	Start-up checking	25
3.	Maintenance	25
3.1.	Change of spindle packing	25
3.2.	Change of plug assembly	26
3.3.	Change of the seat	26
3.4.	Change of the balance gasket	26
3.5.	Torque and tightening order nuts/bolts	27
4.	Dimensions	28
5.	Spare parts list	29
5.1.	DN15 – DN65	29
5.2.	DN80 – DN200	31
5.3.	DN80 – DN100 BALANCED	33
5.4.	DN125 – DN200 BALANCED	35
6.	Nameplate	37
7.	Declaration of conformity	37
	•	

1. Safety note

The 2 ways control valves are designed to be used with several fluids. The choice of the 2 ways control valves depends of the application and technical characteristics requested (pipes ND, nominal pressure, body material and connections). The valve body material and its nominal pressure are clearly indicated on the valve. These data must be adapted to usage conditions and the fluid in use.

The traceability of the valves is ensured by their unique serial number located on the valve, facilitating spare parts orders.

Valves are subject to several tests after manufacturing and are delivered pre-set (e.g., Pressure test, operation test, and sealing test). No additional adjustment is needed.

The manufacturer's liability is not engaged in case of damage caused by misuse, non-compliance with this manual, the use of unqualified personnel, or modifications made by the user.

Please consult precautions before any installation or usage

The installation or commissioning of devices should only be carried out by qualified personnel.

Qualified personnel, due to their specialized training, maintenance and regulation knowledge, experience, awareness of national regulations, standards, and directives in force, can carry out described work and autonomously recognize potential dangers.

It is not permitted to modify, transform or alter the product. Such actions, which may compromise the safety or performance of the product, are the sole responsibility of the customer.

Different hazards may be present depending on the process medium or the activity.

Protective equipment required includes:

- Protective clothing, gloves, eye and respiratory protection if the fluid is cold, hot, caustic or corrosive.
- Ear protection when working near the valve
- safety harnesses if there is a risk of falling
- Harad hat and safety shoes, which may be protected against electrostatic discharge.

This list is not exhaustive and should be supplemented by the plant operator's requirements.

1.1. Responsibilities

The operator must comply with all relevant regulations, particularly those relating to safety.

This manual and any other documents applicable to the equipment have to be available to the personnel

The personnel have to be trained in the correct use of the equipment and ensure their safety and that of any persons present

The operator must comply with the limits defined in the technical specifications of the product and those indicated on the nameplate. These limits also apply when starting and stopping the installation.

The operator must be familiar with this manual and other applicable documents and must observe the warnings and notes contained therein. They must also be familiar with, and comply with, all applicable health and safety regulations.

1.2. Warnings

Risk of **bursting** in pressure equipment, observe the maximum permissible pressure for valve, relieve the pressure and purge the entire section of the installation concerned before starting any work.

Crush hazard arising from moving parts. Device contains moving parts, valve stem, actuator and coupling nut. Pinch risk if limbs are introduced. Do not work on the valve when the pneumatic and electrical actuator supply is active. Check stem travel is not blocked by an object or seized. If it is, release springs stress by following the instructions provided.

Risk of **hearing loss** or deafness due to loud noise. The noise emissions depend on the valve version, plant facilities and process medium. Wear hearing protection when working near the valve.

Risk of **burn** injuries due to hot or cold components and pipelines. Depending on the process medium, valve components and pipelines may get very hot or cold and cause burn injuries. Allow components and pipelines to cool down or warm up to the ambient temperature. Wear protective clothing and safety gloves.

2020 valves with Ex protection can be installed in zones 1, 2, 21 and 22 (2014/34/EU). Personnel must be trained or authorized to work on ATEX equipment in installations in zones where there is a risk of explosion.

All accessories, actuators, limit switches and positioners must have a level of protection greater than or equal to that of the valve alone. Components conformity and the whole assembly must be checked. SART von Rohr declines all responsibility if a device is added by a person other than the company and compliance has not been checked.

- Ensure that service conditions are within the usage limits written on the nameplate.
- Check the correct movement of the device stem (without jerks or hard points).
- Electrical continuity must be ensured; the device should be properly grounded.
- If the device is insulated, we decline all responsibility, especially concerning the risks of hot surfaces and electrostatic discharges.
- It's necessary to check for traces, shocks, or corrosion visually before installation.
- Verify if materials under pressure are compatible with the controlled fluid.

The device's surface can heat up due to the fluid's temperature. This depends on the installation situation and must be considered by the operator. The valve surface temperature mainly depends on the fluid application temperature. The device itself contains no heating source. To determine the maximum surface temperature, other elements such as ambient temperature or solar radiation must be taken into account. As a precaution, consider the fluid's maximum temperature as the maximum surface temperature if determining the actual surface temperature isn't possible, even in anticipated malfunction scenarios.

Required temperature class (gas ignition temperature)	Maximum permissible surface temperature	Maximum permissible ambient temperature
T6 (T > 85 °C)	+65°C	+50°C
T5 (T > 100 °C)	+80°C	+50°C
T4 (T > 135 °C)	+115°C	+50°C
T3 (T > 200 °C)	+180°C	+50°C
T2 (T > 300 °C)	+280°C	+50°C
T1 (T > 450 °C)	+430°C	+50°C

The device may contain components with a non-conductive coating or paint. In such cases, the operator must take appropriate measures to prevent electrostatic charging. If needed, clean the valve with a damp cloth. Ensure that the cleaning does not cause any electrostatic charge. Avoid any external impacts. External impacts can generate sparks from friction processes between different materials.

Installation and connections

2.1. Environment

A control valve can be installed in an industrial environment but taking into account a quality atmosphere. The atmosphere in which the control valve will work is very important for the durability and reliability over time. This atmosphere must be taken into account when specifying and lead possibly a non-standard definition (special paint, additional gaskets, special materials etc...).

a) Content of ambient dust

The dust content must be as low as possible and less than 10 000 particles per m³. The particles of ferrous metals, carbon, abrasives, fibers must be limited in all cases, specified in the inquiry to prevent overheating of the electronics magnetic fields accumulation, heating and wear of moving parts. Similarly, chlorine compounds, sulfur and Nox must be avoid and specified in the inquiry. These compounds accelerate the corrosion can be amplified by temperature changes.

b) Room temperatures

The elastomers and electronics are sensitive to temperature. The control valve must be operated within the room temperature range -25 to +50°C to give satisfaction and ensure reliability and optimal durability.

c) Humidity

A high humidity level is favorable to condensation in case of temperature decreases and promotes corrosion. A too low humidity level is too low promotes ESD and must also be avoided. Keeping the humidity between 30 and 70 %, the risks become much more limited. Outside operation without protection must be specified in the inquiry.

2.2. Fitting instructions

Before installation, please read the recommendations hereunder.

- Consider space required for maintenance and for removing the equipment.
- Remove plastic plugs.
- The pipes must be cleaned to remove contamination (rust, scale, solder balls) before the installation of a control valve to avoid damaging the plug and his tightness. A strainer must be installed upstream protect the valve of residual particles:
 - o Strainer 100 μ m maximum for Kv ≤ 2,5
 - Strainer 800µm maximum for Kv > 2,5
- Observe direction of flow. The flow arrow is engraved on the valve body
- The valve must be installed on **horizontal** piping actuator on top of the valve. In case of installation on vertical piping, the pillars should be one above the other to support the actuator weight. If installed on a vertical pipe, the solution must be validated by the technical services of SART VON ROHR, otherwise the warranty will not be applied. If the solution is validated, the pillars will be in the same vertical plane in order to support the engine weight. No other position of the pillars is acceptable.
- The valve must be protected against all outside stress, included flanges.

<u>A control valve is not designed for line isolating. A control valve is not an on/off valve</u>. Is necessary an on/off valve must be installed upstream of the control valve.

To obtain the optimum performance:

- Please clear upstream 5x ND Straight, linear and undisturbed
- Please clear upstream 10x ND Straight, linear and undisturbed

To not exceed the maximum operating temperature of the actuator and its accessories (90°C for a pneumatic actuator type PA or MA, 80°C for a positioner), piping and valve body insulation is recommended before start up

2.3. Electricals connections

The actuator wiring should be made according to the mounting instructions. Before connections, shut off the power supply. Before all connections, take care of the power supply information, amperage and frequency specified on the actuator nameplate. Check signal type (4-20 mA, 0-10V, etc...).

2.4. Pneumatics connections

For each pneumatic actuator, provide a pressure regulator to avoid interferences between the pneumatics actuators and to avoid diaphragm damage.

Max air supply is 6 barg.

The condensation in the system must be absolutely avoided, the use of dry air is very important especially for the positioner (no oil).

Air quality must be class (2,2,2) according to ISO 8573-1

2.5. Setting service

All the valves are adjusted and pre-tested in our firm. It's not necessary to make other adjustment. Please read and apply the previous instructions before starting.

Leakage of spindle and valve

The stuffing box of the valve with pure graphite packing can be tighten if necessary. The PTFE packing system is equipped with a spring and it's not necessary to tight the stuffing box. When the valve is under pressure and temperature, it's formally inadvisable to tighten the valve.

2.6. Start-up checking

In normal operation mode valve should operate at 15 to 95 % of maximum stroke.

Max flow rate not reached:

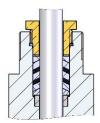
- Check that the valve opens at 100 % with 20 mA
- Check that the valve and strainer are clean
- Check that the valve corresponds to the required specifications

To avoid premature wear, it is necessary to employ a valve adapted to the specified operating characteristics and avoid continuous operation outside its operating range. The sizing of a valve can be defined on request.

Checking of control

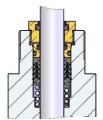
In all cases check control loop is stable. Unstable control loop (constantly moving back and forth one step) causes premature wear. In this case, please contact us.

3. Maintenance


This operation must be realized by trained staff.

3.1. Change of spindle packing

Spindle packing problem must be solved immediately, because otherwise a new packing can leak again after a short period of time. Packings are available on spare parts. Please give the serial number written on the valve for ordering.


- a) This job must be realized by a trained and competent staff
- b) Drain the pipes and be sure than there is no pressure in
- c) The actuator must be disassembled from the valve. Check actuator instructions.
- d) Remove the cap nut
- e) Remove the old packing, clean the packing compartment and check it
- f) Insert new packing with adapted tooling.
- g) Tighten the cap nut and assemble the actuator and accessories (limit switches, positioner...)

3.1.1. SVS Graphite stuffing-box

Spindle packing should be tightened if necessary. During this operation, tighten presser gradually, ½ turn by ½ turn max. Stop tightening as soon as spindle packing prevent the sliding of the stem. Be careful, too much tightening could cause friction forces and deteriorate the sliding of the stem.

3.1.2. PTFE stuffing-box

The presser does not need to be tightened as long as it is in contact with the valve bonnet (systems with a pretension spring). Otherwise, the presser must come into contact with the valve bonnet. Once in contact, tighten an additional ¼ turn.

3.2. Change of plug assembly

We highly recommend to replace cover gasket, seat gasket and spindle packing when replacing the plug/stem assembly.

- a) Do all the operation shown in item 3.1 a) to c)
- b) Remove the cover 3 and the assembly spindle 12+2
- c) Remove the assembly plug 12+2 from the cover 3
- d) Replace the assembly plug 12+2
- e) Insert the assembly plug 12+2 in the cover 3 after greasing the spindle with grease provided in the packing kit.
- f) Assemble the cover 3 and the assembly plug 12+2 on the body 1 after replacing the cover gasket 7
- g) Cross torque the nuts 5 according the hereunder table
- h) Tighten presser, assembly the actuator and replace accessories (captor, positioner...)

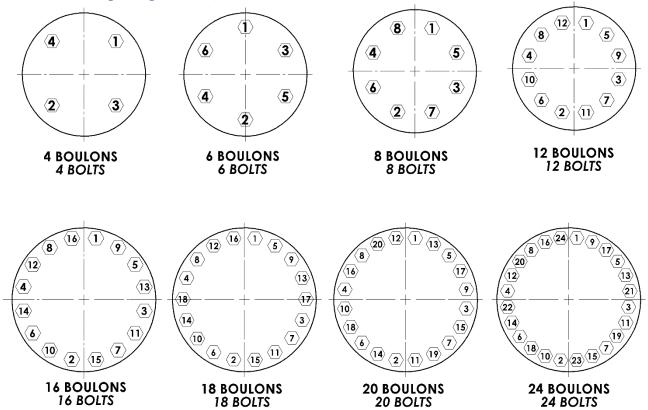
3.3. Change of the seat

We highly recommend to replace cover gasket, seat gasket and spindle packing when replacing the plug/stem assembly.

- a) Do all the operation shown in item 3.1 a) to c)
- b) Remove the diffuser 28
- c) Remove the seat 18 and seat gaskets 21
- d) Replace the seat **18** and seat gaskets **21** into the body
- e) Replace the diffuser 28
- f) Assemble the cover 3 and the assembly plug 12+2 on the body 1 after replacing the cover gasket 7
- g) Cross torque the nuts 5 according the hereunder table
- h) Tighten presser, assembly the actuator and replace accessories (captor, positioner...)

3.4. Change of the balance gasket

We highly recommend to replace cover gasket, seat gasket and spindle packing when replacing the plug/stem assembly.


- a) Do all the operation shown in item 3.1 a) to c)
- b) Remove the assembly plug 12+2 from the cover 3
- c) Remove the 4x screw 136 + locking plate 137 from plug 2 and remove the gasket plate 135
- d) Clean gasket groove and balancing surface of cover 3
- e) Replace balance gasket after greasing with grease like Molykote Multilub
- f) Assemble gasket plate 135 with gluing 4x screw 136 + locking plate 137
- g) Assemble inferior part of the plug 2 and tighten the grub screw
- h) Assemble the cover 3 and the assembly plug 12+2 on the body 1 after replacing the cover gasket 7
- i) Cross torque the nuts 5 according the hereunder table
- j) Tighten presser, assembly the actuator and replace accessories (captor, positioner...)

3.5. Torque and tightening order nuts/bolts

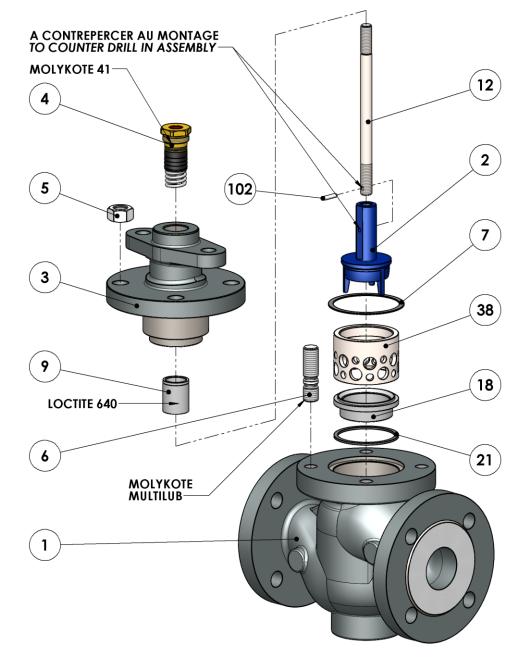
3.5.1. Torque for cover bolts


	Valve	Fa	stener	Torque
DN	Pressure	Νx	D	(N.m)
15/20	PN16/40 - Class 150/300	4 x	M10	30
25/32	PN16/40 - Class 150/300	4 x	M12	55
40/50	PN16/40 - Class 150/300	4 x	M16	95
65	PN16/PN40	4 x	M16	135
80	PN16/40 - Class 150/300	8 x	M16	110
100	PN16/40 - Class 150/300	8 x	M16	135
125	PN16/40 - Class 150/300	12 x	M16	140
150	PN16/40 - Class 150/300	12 x	M20	175
200	PN16/40 - Class 150/300	16 x	M20	225

3.5.2. Tightening order nuts/bolds

4. Dimensions

Threaded and welded version												
DN	1/2"	3/4"	1"	1"%	1" ½	2"						
L	130	130	130	200	200	200						
H1	60	60	60	90	90	90						
H2	128	128	128	156	156	156						
H4 (max)	190	190	190	190	190	190						
Masse / Mass (kg)	5	5	5	11.5	11.5	11.5						
	Flanged version											
DN	15	20	25	32	40	50	65	80	100	125	150	200
L PN16/25/40 FS ⁽¹⁾	130	150	160	180	200	230	290	310	350	400	480	600
L Class 150 RF ⁽³⁷⁾	184	184	184		222	254		298	352		451	543
L Class 150 RTJ ⁽³⁷⁾	190	194	197		235	267		318	368		473	568
L Class 300 RF ⁽³⁸⁾			197		235	267		311	365		464	556
L Class 300 RTJ (38)	201	207	210		248	283		333	384		489	584
H1	48	53	60	70	85	90	100	120	145	170	205	250
H2 (PN16/25/40 + Class 150/300)	128	128	133	138	160	156	162	178	198	280	305	350
H4 (max)	190	190	190	190	190	190	200	200	210	288	288	300
Mass (kg)	6	7	9	11	15	17.5	25	36	54	105	150	270


- (1) According to EN558 série 1 DIN3202-1 séries F 1
- (37) According to EN558 série 38 CEI 60534-3-2 + ISA S75.08.01
- (38) According to EN558 série 39 CEI 60534-3-2 + ISA S75.08.01

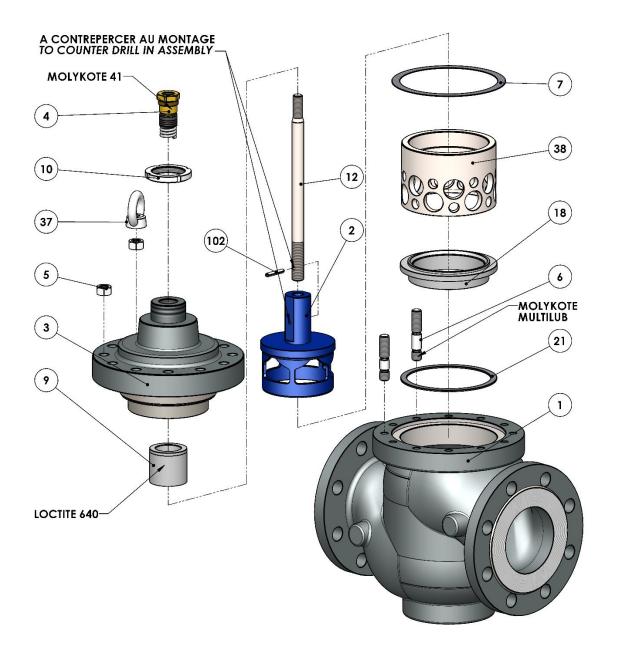
	PA35-B6	PA60-A6	PA60-C6	MA41-A6	MA41-B6	MA41-C6	MA60-G6	MA60-D6
ØD	210	310	310	420	420	420	600	600
Н3	130	156	176	224	242	329	383	534
Mass (kg)	5.2	10.5	12.5	55	55	76	160	192

All dimensions in mm

5. Spare parts list

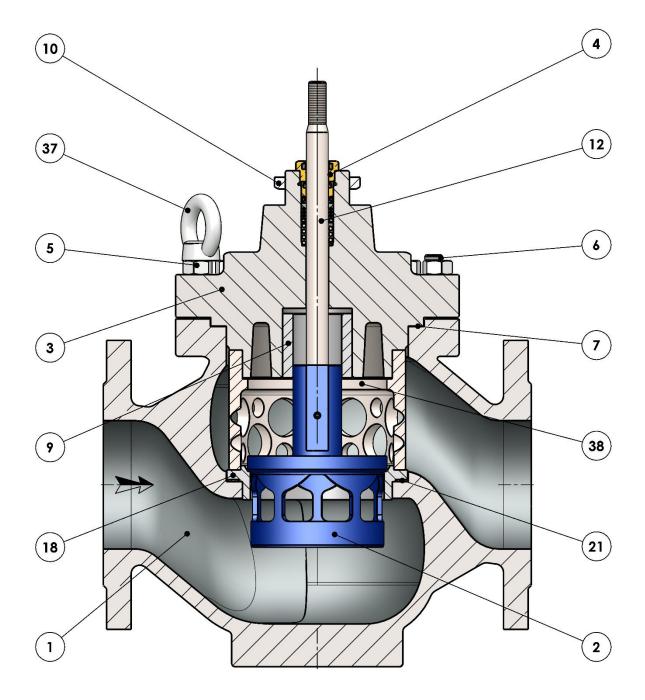
5.1. DN15 - DN65

Item	Description	Material
1	Body	1.0619-A216 WCB / 1.4408-A351 CF8M
2*	Plug	Stainless steel
3	Cover	1.0619-WCB / 1.4404-1.4408-CF8M
4*	Stuffing box	Brass / Stainless steel
5	Nut	8.8 / A2-70
6	Stud	8.8 / A2-70
7*	Gasket	Graphite-SST
9	Guiding bush	Stainless steel
12	Stem	Stainless steel
18	Seat	Stainless steel
21*	Gasket	Graphite-SST
38	Diffuser	Stainless steel
102	Pin	Stainless steel


* Spare parts

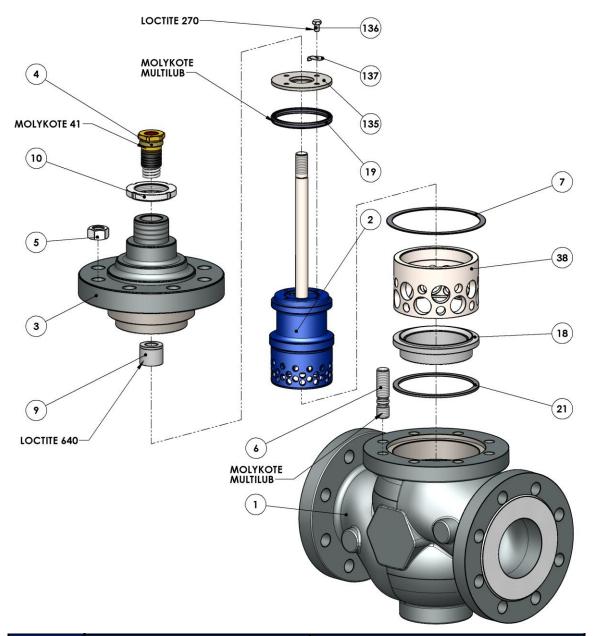
SIMI 2020 P FR-EN Rev3 Subject to change

5.2. DN80 - DN200

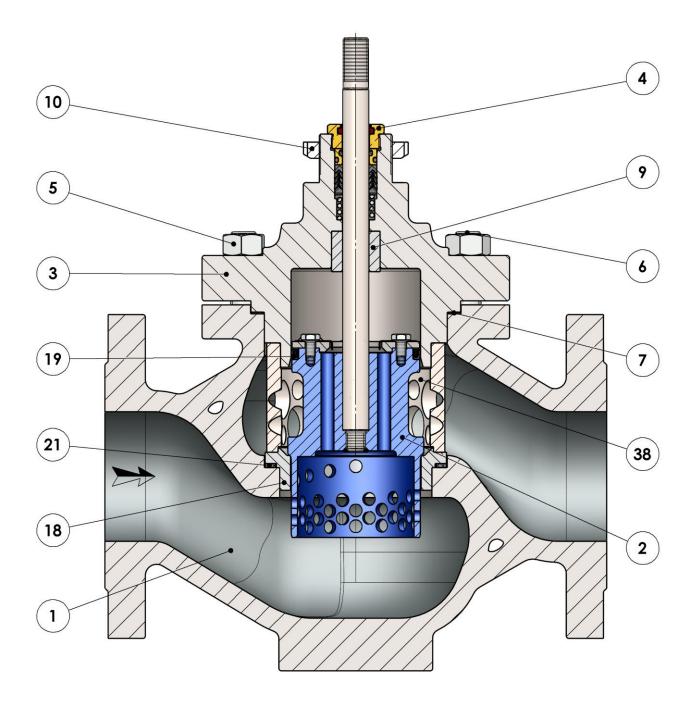


Item	Description	Material
1	Body	1.0619-A216 WCB / 1.4408-A351 CF8M
2*	Plug	Stainless steel
3	Cover	1.0619-WCB / 1.4404-1.4408-CF8M
4*	Stuffing box	Brass / Stainless steel
5	Nut	8.8 / A2-70
6	Stud	8.8 / A2-70
7*	Gasket	Graphite-SST
9	Guiding bush	Stainless steel
10	Slotted round nut	Stainless steel
18	Seat	Stainless steel
21*	Gasket	Graphite-SST
37	Lifting eye nut	Steel / Stainless steel
38	Diffuser	Stainless steel
102	Pin	Stainless steel

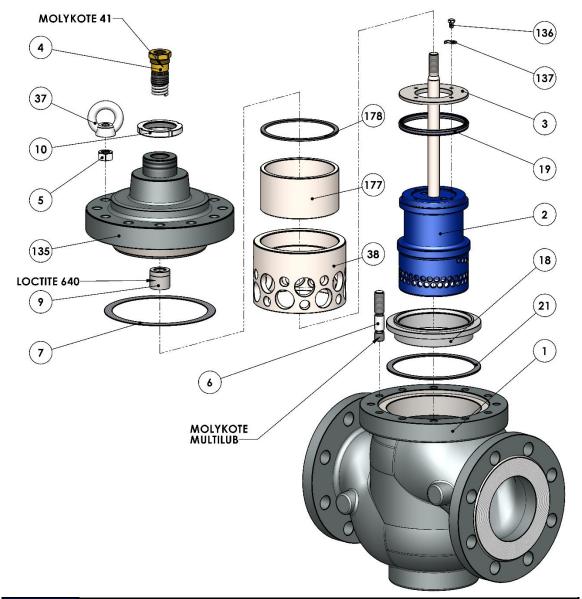
* Spare parts


Item 37 according to DN

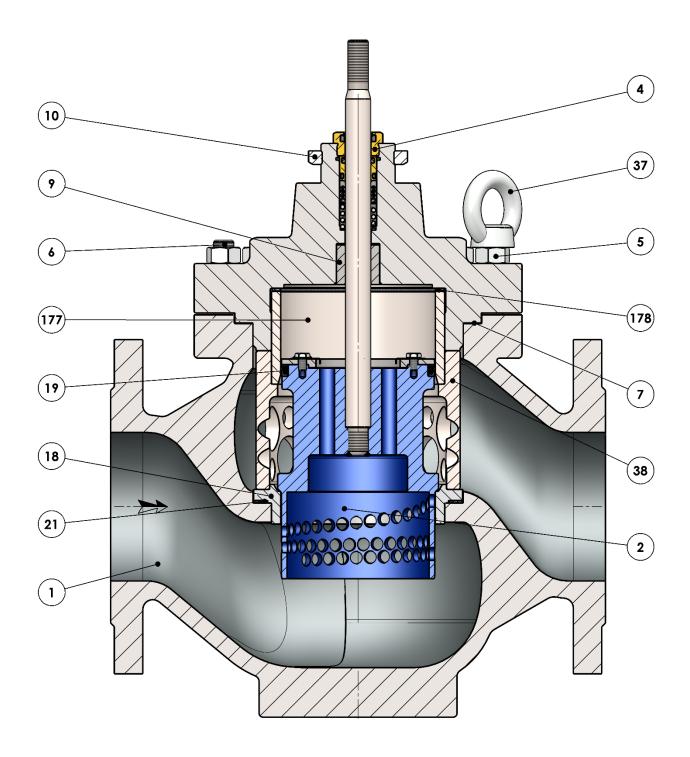
SIMI 2020 P FR-EN Rev3 Subject to change

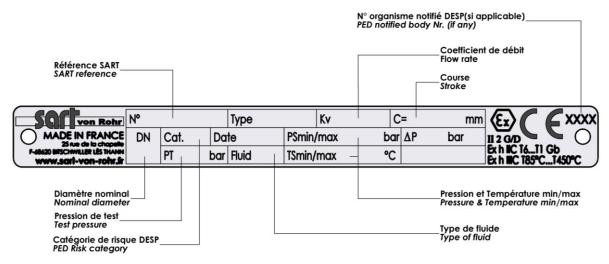

5.3. DN80 - DN100 BALANCED

Item	Description	Material
1	Body	1.0619- A216 WCB-1.4408- A351 CF8M
2*	Plug	Stainless steel
3	Cover	1.0619-WCB / 1.4404-1.4408-CF8M
4*	Stuffing box	Brass / Stainless steel
5	Nut	8.8 / A2-70
6	Stud	8.8 / A2-70
7*	Gasket	Graphite-SST
9	Guiding bush	Stainless steel
10	Slotted round nut	Stainless steel
18	Seat	Stainless steel
19*	Gasket	PTFE-SST
21*	Gasket	Graphite-SST
38	Diffuser	Stainless steel
135	Plate	Stainless steel
136	Hex. Screw	Stainless steel
137	Stop plate	Stainless steel


* Spare parts

SIMI 2020 P FR-EN Rev3 Subject to change


5.4. DN125 - DN200 BALANCED


Item	Description	Material
1	Body	1.0619- A216 WCB-1.4408- A351 CF8M
2*	Plug	Stainless steel
3	Cover	1.0619-WCB / 1.4404-1.4408-CF8M
4*	Stuffing box	Brass / Stainless steel
5	Nut	8.8 / A2-70
6	Stud	8.8 / A2-70
7*	Gasket	Graphite-SST
9	Guiding bush	Stainless steel
10	Slotted round nut	Stainless steel
18	Seat	Stainless steel
19*	Gasket	PTFE-SST
21*	Gasket	Graphite-SST
38	Diffuser	Stainless steel
135	Plate	Stainless steel
136	Hex. Screw	Stainless steel
137	Stop plate	Stainless steel

*Spare parts

6. Nameplate

Nameplate for ATEX version

Operating maximum pressure / Operating temperature (see technical documentation) Test pressure according to PED.

7. Declaration of conformity

The risk category and the assessment module used are indicated in EU declaration of conformity. The risk category and/or the possible application of the ATEX directive is indicated on the nameplate of the device (see §6).

The conformity assessment modules of PED are:

Cat. I : module A Cat. II : module D1

Standards/codes used:

CODAP 2010

NF EN 12516-1 / NF EN12516-2

ANSI B16-34

The possible application of the ATEX directive is indicated on the nameplate of the device.

Standards / codes used:

NF EN IEC 80079-36

NF EN IEC 80079-37